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Abstract— Lately stereo matching has become a key aspect
in autonomous driving, providing highly accurate solutions
at relatively low cost. Top approaches on state of the art
benchmarks rely on learning mechanisms such as convolutional
neural networks (ConvNets) to boost matching accuracy.

We propose a new real-time stereo reconstruction method
that uses a ConvNet for semantically segmenting the driving
scene. In a ”divide and conquer” approach this segmentation
enables us to split the large heterogeneous traffic scene into
smaller regions with similar features. We use the segmentation
results to enhance Census Transform with an optimal census
mask and the SGM energy optimization step with an optimal P1

penalty for each predicted class. Additionally, we improve the
sub-pixel accuracy of the stereo matching by finding optimal
interpolation functions for each particular segment class. In
both cases we propose new stochastic optimization methods
based on genetic algorithms that can incrementally adjust the
parameters for better solutions. Tests performed on Kitti and
real traffic scenarios show that our method outperforms the
accuracy of previous solutions.

I. INTRODUCTION

Over the last two decades stereo vision has proven to be

a viable, low-cost method for obtaining depth information

in various environments and for diverse applications. Even

tough lately its ubiquitous usage has been surpassed by

the apparition of Velodyne Lidar its capabilities still make

the stereo vision sensor an important tool for computer

vision. Although extremely accurate for medium-range depth

distances, Velodyne is expensive and suffers from sparse

results which makes them unreliable to some extent in the

far distance setting (more than 50m).

The classic taxonomy of stereo reconstruction algorithms

separates them into two categories: global or local methods.

Local approaches evaluate the disparity relying on a simi-

larity criterion applied over small (generally maximum 5x5)

support windows. Global methods evaluate the disparity of

all pixels in an image as a whole by optimizing a global

energy function. A boost in performance of local algorithms

has appeared lately in conjunction with convolutional neural

networks (ConvNets) [1], [2] which are best suited for

optimizing the similarity criterion.

From a different perspective, stereo reconstruction algo-

rithms can be seen as either discrete or continuous. Ac-

cording to this criteria, algorithms in continuous space have

proven more accurate with increased density, at larger com-

putational cost. On the other hand, the discrete algorithms

offer real-time performance, with pixel-wise comparable
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results. However when sub-pixel accurate results are required

(for long range accuracy), they suffer from ”pixel-locking ef-

fect”: an over-crowding of disparities towards integer values.

The most significant algorithm in the discrete category

is the Semi-Global Matching (SGM) [3] [4]. This method

stays at the edge between local and global solutions since it

performs multiple 1D energy optimizations on the image,

in order to approximate a 2D optimization. The energy

optimization is based on a data correlation term (usually

Census Transform – CT [5]) and a smoothness constraint

enforced by the use of two penalities. Results with major

dense stereo correspondence datasets (Middlebury [6], Kitti

[7]) reveal this method as good compromise between speed

and accuracy.

This paper presents an improved Census-based SGM so-

lution that exploits ConvNets for increasing the algorithm’s

density and accuracy. The network is not used directly for

finding a similarity measure but rather as a preprocessing

technique for performing an initial semantic segmentation of

the scene. We also propose three new genetic algorithms,

two for pixel-level enhancement of SGM by optimizing the

census mask and the P1 penalty, and one for generating

the optimal sub-pixel interpolation function. The paper starts

with presenting the state of the art in segmentation census-

based and sub-pixel accurate stereo solutions. The next

Section describes the workflow of the proposed method,

the ConvNet-based image segmentation and the newly in-

troduced pixel-level genetic algorithms. In Section 4 we

discuss in detail the enhancements we propose for the sub-

pixel part of the algorithm. Section 5 presents the accuracy

improvements produced by gradually introducing each new

method. Moreover, it depicts results obtained in other driving

scenarios. Finally, we conclude the paper in Section 6.

II. RELATED WORK

A. Segmentation-based Stereo

Several methods that combine image segmentation with

stereo have been developed during the last years. Such

algorithms try to increase disparity accuracy by using seg-

mentation as a post processing step. The authors of [8]

extract confident disparity pixels and propose a plane fitting-

based segmentation to fill the disparity holes. The same

goal is followed by the method of [9], but is using super-

pixels as a method to group similar pixels. The problem with

all these super-pixel based implementations is the increased

computational effort making them not viable for real-time

usage.
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More recently semantic segmentation has become more

and more reliable for confidently highlight scene objects.

The authors in [10] rely on the similarity given by specific

object structures to fill sparse disparity estimates. In the

recent article [11] the authors proposed to apply semantic

segmentation over their stixel-based stereo method to enrich

the scene information and obtain more reliable results.

B. Census-based methods

A good data correlation term in stereo matching is the

key in obtaining accurate results. Most approaches nowadays

prefer to focus on non-parametric transforms (Matrix rank

transform, Birchfeld Tomasi [12] ) instead of using intensity-

based metrics (SAD, SSD, NCC). Census Transform [5] for

instance stands out among these methods not only due to its

non-parametric properties, but also because it can be easily

implemented on any type of hardware.

New types of Census Transforms have been developed

[13], [14], producing better results at smaller costs. These

methods are improved by either using a Center-Symmetric

Census and/or by choosing larger, sparse census windows.

A mask is applied over these windows in order to select the

pixels containing the most significant information. Notable

census masks are the Star [15], the Center-Symmetric [14]

and the Chessboard [14]. In our previous work [16] we show

that better census masks can be created through stochastic

optimization and we propose a new method that can obtain

improved results.

C. Long-range stereo for discrete case

Various approaches for sub-pixel improvement of stereo

algorithms have been proposed during the last decade. A

relevant study is shown in [17], which accounts for the best

methods in both discrete and continuous domain. Sub-pixel

improvement techniques based on a mathematical model [18]

are easily being correlated with simple local algorithms such

as SAD or SSD. For more complex algorithms (such as

SGM) good sub-pixel compensation techniques have been

developed experimentally. [19], [20], or [21] use function

fitting as a statistically-based process for finding a function

that can alleviate the pixel-locking effect.

The problem with all these methods is that a function is

generally fitted to optimally operate on fronto-parallel sur-

faces. This results in a performance degradation for slanted

or irregular surfaces. Although giving globally better results,

LUT-based methods [22] do not solve entirely the situation

of non-homogeneity in the scene.

III. METHODOLOGY AND PIXEL-LEVEL IMPROVEMENTS

A. Overall Architecture

Since most of the aforementioned methods suffer from

a lack of parameter globalization, we propose to divide

the scene into homogeneous regions. In the initial step of

the algorithm we train a convolutional neural network for

accurate pixel-wise scene segmentation. Then, for each class

we determine an optimal census mask, an optimal SGM

penalty P1 and an optimal sub-pixel interpolation function.

An overview of the proposed stereo method can be seen in

Fig 1.

B. Semantic segmentation of the image

As previously mentioned, combining image segmentation

with stereo is not a new trick. Latest approaches for semantic

segmentation [23] nowadays use learning mechanisms such

as boosting [24] or convolutional neural networks [25], [26]

and they can obtain more than 95% in pixel accuracy clas-

sification. Among top methods we can find FCN [27], that

uses the a modified VGG ConvNet with 16 layers, producing

fairly good results at good speed (6-7 fps). Although it can

classify each driving scene pixel into 35 classes, we slightly

modify the architecture to account for a smaller number of

classes. The proposed segment classes are:

1) The road surface area

2) The sidewalk and the side terrain

3) Large road obstacles like cars, trucks etc. which are

generally fronto-parallel to the cameras

4) Small road obstacles like pedestrians or traffic signs

5) Large side objects like buildings, walls or fences

6) Irregular shapes such as vegetation and trees

7) The sky region above features from other classes. This

class will not be used for stereo for obvious reasons

(disparity is 0).

Although a larger number of classes might provide more

a-priori information, observations revealed by exhaustive

testing show that an increased granularity for segmentation

can introduce processing difficulties (especially for segments

composed by fewer pixels) and may lead to increased com-

putational costs.

C. Pixel level genetic algorithms

As each segment class provides enough information about

the surface structure, we further apply optimizations in

”divide and conquer” manner. Therefore, according to each

segment class we can determine:

• the optimal census mask. As presented in [16], a viable

census masks usually covers a surface of maximum

15x15 pixels, giving enough information and allowing

for maximum 32 pixels to be selected. We present the

methodology for finding a segment-dependent optimal

census mask in Algorithm 1. If we account for more

than 32 bits, the processing time increases beyond the

real-time requirement.

• the optimal P1 penalty for SGM energy minimiza-

tion step. As P1 acknowledges for small disparity

changes, we can assume that these changes can also

be dependent on the surface. Therefore, we propose

a new strategy (Algorithm 2) that accounts for these

cases and establishes an optimal P1 for each semantic

segment. On the other hand, P2 penalty is generally

used for large disparity changes. Since the semantic

segmentation algorithm accurately separates the traffic

image into rather homogeneous classes, we can assume

that large disparity disruptions entail segment changes.

Moreover, it has been previously shown [28] that SGM
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Fig. 1: Workflow of the Proposed Algorithm

produces best results when P2 is adapted to the intensity

surface. Therefore, P2 is not accounted for stochastic

optimization.

Algorithm 1 Algorithm for Optimal Census Mask

1: procedure GENETIC ALG. FOR CENSUS

2: for all segments do
3: initialize population(0)
4: dCT ← apply CT(population(0))
5: population.fitness(0)← err(dCT , dGT )
6: repeat
7: perfrom selection, crossover and mutation
8: on population(i)
9: partially initialize population(i+1)

10: population(i+1) ← population mut(i) +
population(i+1)

11: dCT ← apply CT(population(i+1))
12: population.fitness(i+1)← err(dCT , dGT )
13: until i=finalGeneration
14: end for
15: end procedure

In both these algorithms the operator (+) defines a con-

catenation between the newly generated and the preserved

populations. Details about the selection, crossover and mu-

tation steps of the algorithm are extensively highlighted in

[16].

IV. SUB-PIXEL ENHANCEMENTS

A. Sub-pixel Interpolation Theory
To further improve the accuracy of the stereo matching

we additionally focus on the fractional part of the disparity.

Standard methods estimate the sub-pixel disparity by adapt-

ing the integer value with a sub-unitary amount, such as:

dSubPx = dInt + f(cd−1, cd, cd+1) (1)

where dInt is the integer disparity value, cd is the cost

at the chosen disparity, while cd−1 and cd+1 represent the

neighboring costs (taken from the cost volume generated

using SGM).
Previous approaches have shown that f can be modeled

as depending on only one parameter (instead of 3) by:

• A translation of costs to the origin of cd on the real axis

ld = cd−1 − cd

rd = cd+1 − cd (2)

Algorithm 2 Algorithm for Optimal SGM Penalty P1

1: procedure GENETIC ALG. FOR P1

2: for seg = 1 to all segments do
3: initialize population(0) with P1(seg)
4: end for
5: dSGM ← apply SGM(population(0))
6: population.fitness(0)← err(dSGM , dGT )
7: repeat
8: perfrom selection, crossover and mutation
9: on population(i)

10: for seg = 1 to all segments do
11: partially initialize population(i+1) with P1(seg)
12: end for
13: population(i+1) ← population mut(i) +

population(i+1)
14: dSGM ← apply SGM(population(i+1))
15: population.fitness(i+1)← err(dSGM , dGT )
16: until i=finalGeneration
17: end procedure

• A correlation of ld and rd based on the observations

presented in [20]:

x = ld/rd (3)

with sub-pixel distribution being symmetric with respect

to integer values.

Therefore, reformulating the sup-pixel disparity (1) accord-

ing to (2) and (3), we get:

dSubPix =

{
dInt − 0.5 + f(x) if ld ≤ rd

dInt + 0.5− f(1/x) otherwise
(4)

B. Function Fitting

To model a function such that it gives you good distri-

butions is a laborious process, known as function fitting.

Previous approaches have shown that resulting functions

must meet the following properties:

• it is defined on the interval [0, 1], with values in [0, 0.5];
• it is monotonically increasing.

Literature highlights lots of good candidates, starting from

simple functions such as parabola (5):

f(x) =
x

x+ 1
(5)
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(a) Pixels only from segment class 3 (fronto-parallel planes)

(b) Pixels from all segments

Fig. 2: GT is the expected disparity distribution, SGM +

SinFit are the histograms obtained with the SinFit correction

proposed in [20]

or equiangular (symmetric V)(6):

f(x) = 0.5× x (6)

and continuing to more complex ones, such as SinFit (7) or

MaxFit(8):

f(x) = 1/2× (sin(x× π

2
− π

2
) + 1) (7)

f(x) = max((1− cos(x× π

3
)), (x4 + x)/4) (8)

Although these functions work fine on fronto-parallel planes,

their behavior becomes unsteady in case of more complex

surfaces.

A clear understanding of the sub-pixel behavior for a par-

ticular interpolation function can be seen by shifting the view

from 3D space to a histogram representation. The histogram

bins are considered classes of points corresponding to equal

depth intervals in the range [-0.5, 0.5]. Each image pixel

from the scene is classified according to its fractional part

of the disparity in one of the histogram bins. In Fig 2a we

show a histogram representation of points that resulted after

applying SGM + SinFit (one of the best sub-pixel meth-

ods) with respect to the Ground Truth. The GT points are

randomly chosen, but for representation purposes we force

equal number of points for all GT classes. The histogram

shows that if we account only for pixels in segment class 3

(fronto-parallel planes), the point re-distribution is not that

far from GT. On the other hand, if we account for pixels in

all classes (Fig 2b), besides the fact that pixel-locking effect

is still present, the overall re-distribution is distorted.

For both these figures it can easily be seen that more com-

plex functions have to be developed and each function must

be selected according to the properties of each particular

segment.

÷

x +

x 1

Fig. 3: Parabola as expression tree

C. Sub-Pixel level Genetic Algorithm

As previously shown we are looking for functions that

have an increased complexity, so they produce convincing

results for each particular segment class. Since the ”by hand”

function fitting methodology presented so far is laborious and

time-consuming we approach this step using genetic algo-

rithms which search for the best set of functions (individuals)

that correctly redistributes image points at sub-pixel level.

In this context each function is described as a binary

expression tree, having as operators the following set of

nodes which allow for increased flexibility:

• Unary operators: sin, cos, tan, arcsin, arccos, arctan, log,
sqrt,min,max

• Binary operators: +,−, ∗, /
• EMPTY - for uncompleted branches

The operands of each generated function are situated on the

leaves of each binary tree and represent a sufficient subset

of possible:

• Constants: 1, 2, 5, π, π/2, e (Euler constant)

• Variables: x = ld/rd or x1 = ld, x2 = rd

For instance, the expression in equation 5 (parabolic

function) can be seen as the following expression tree (Fig

3).

Algorithm 3 describes the way in which an optimal inter-

polation function is found. Although sub-pixel interpolation

theory related to SGM [20], [19] shows that x = ld/rd can

be used as a single variable, the algorithm permits for both

ld and rd to be used free variables. In terms of function

complexity, this is given by the tree depth, established as

either 5 or 6. Thus, the most complex functions will be of

maximum 32 or 64 operands (complete binary expression

tree).

Remodeling an interpolation function can be done by:

• Crossover: Considering 2 functions f1(x) and f2(x)
presented as expression trees, randomly selected

branches (together with their descendants) are inter-

changed between f1 and f2. It results in parts of

expressions being changed;

• Mutation: In order to ensure evolution, randomly se-

lected nodes are periodically changed inside the expres-

sion tree.

The fitness for each population member is computed in

two steps (mathematically described in procedure Fitness
Computation in Algorithm 3):
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Algorithm 3 Algorithm for Optimal Sub-pixel Interpolation

Function

1: procedure POINT EXTRACTION FOR SUB-PIXEL

2: for sp cls = 1 to class no do
3: select randomly k GT points in sp cls
4: extract ld and rd costs at selected points
5: end for
6: end procedure
7: procedure FITNESS COMPUTATION

8: for sp cls = 1 to sp class no do
9: evaluate f(x) for all k values

10: med val(sp cls)← median(f(x))
11: end for
12: population(0).genome(i).fitness ←

max err(med val(sp cls), GT (sp cls))
13: end procedure
14: procedure GENERIC ALGORITHM FOR SUB-PIXEL

15: apply SGM and save ld and rd for all points
16: for all segments do
17: perform Point Extraction for Sub-Pixel
18: perform Fitness Computation

for all genimes in popuation(0)
19: repeat
20: remodel f(X) by crossover and mutation
21: on randomly selected genomes from population(i)
22: select population best(i)
23: partial initialize population(i+1)
24: population(i+1) ← population best(i) +

population(i+1)
25: perform Fitness Computation

for all genomes in popuation(i+1)
26: until i=finalGeneration
27: end for
28: end procedure

1) Firstly we compute the representative value per sub-

pixel class. This is done by applying the interpolation

function for all points in each sub-pixel class and then

finding the median value per class;

2) Secondly, we compute the difference between the sub-

pixel representative of each class (the median) and its

corresponding ground truth value. Finally, the maxi-

mum absolute difference among all sub-pixel classes

will be computed as fitness.

V. EXPERIMENTAL DATA

A. Data Analysis

1) Pixel level evaluation methodology: We use the clas-

sical evaluation methodology for stereo vision algorithms by

testing various census masks and various SGM penalties on

real traffic images. [7] is the main dense stereo correspon-

dence benchmark for driving scenarios, so we use its 2015

dataset [29] for training and then testing our method. The

classification criteria is the percent of misclassified pixels

with respect to the nonzero pixels in the ground truth. We use

80 images for training – census and P1 optimization. We use

the entire test set of 200 images for evaluation. We perform

two types of tests: Initially we show the results obtained by

only using the census transform (without any aggregation

or optimization). We then present the results obtained by

integrating the optimization mechanism into SGM. Since

the results in [14] clearly show the superiority of center-

symmetric censuses over the regular ones, all evaluated

methods employ just the center-symmetric case.

2) Sub-pixel level evaluation methodology: In our previ-

ous works [21], [22] we centered the evaluation process on

the histogram domain, comparing distributions generated by

new sub-pixel methods with ground truth (GT) distributions.

Consequently, we introduced two new metrics, accuracy

percent (global accuracy percentage) and peak mismatching

(locally, the worst-case histogram mismatch). However, in

this work we leave out this intermediate representation and

we evaluate the maximum error produced by each function

directly by applying the methodology presented for fitness

function computation. Solutions with more than 90% accu-

racy were developed for each particular segment class.

We train on a randomly chosen subset of points obtained

from the entire dataset so we are not restricted to fronto-

parallel/tilted planes([20], [19], [30], [21]). As the proposed

method intends to alleviate errors at sub-pixel level, the

training phase will be performed only on points correctly

matched at pixel value.

To determine the percentage of erroneous matches, the

Kitti benchmark employs a minimum threshold of two pixels.

Despite this, ground truth images (16 b/px, Velodyne-based)

are good enough for our sub-pixel evaluation methodology

so we were able to perform tests on this set.

B. Results

1) Results at pixel level on Kitti dataset: We test the

following masks:

• Star – the pattern proposed by [15]. This is a symmetric

pattern containing 32 pixels inside a 9× 9 window;

• Center-avoiding – the pattern introduced in [14]. This

pattern selects pixels that are situated at a 2-3 pixel

distance from the center, neither too far, nor too close;

• Dense – This pattern is the most simple one. It ac-

counts for all the pixels in the image. Because of its

proportional spreading to size feature, it gives larger

processing times for larger windows. We considered

here a 7× 7 window;

• GA – This is the method based on the genetic algorithm

proposed in [16], selecting an optimal census mask

for the entire set of images. It selects optimally 32

pixels inside a 11× 11 window so that resulting cost is

represented on 32 bits.

• GA + Seg – The optimal masks and optimal P1 are

given by the proposed genetic algorithms 1 and 2.

This contains a set of 6 census masks, each of them

containing specific (max 32) pixels inside a 11 × 11
window and 6 penalties, which are constant for the
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TABLE I: Average Error percent for Census-only and SGM obtained with various Census Masks (error thresh T = 3)

Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Total
Method Census SGM Census SGM Census SGM Census SGM Census SGM Census SGM Census SGM

Star 89.09% 6.84% 65.51% 15.75% 74.59% 12.01% 65.15% 25.51% 71.14% 25.44% 84.25% 15.46% 82.46% 11.26%

CenterAv 92.87% 11.61% 70.23% 15.48% 82.62% 16.39% 67.59% 25.11% 74.80% 25.45% 89.67% 14.93% 87.79% 11.98%

Dense 83.45% 5.86% 72.16% 16.15% 71.63% 11.58% 62.07% 23.14% 69.10% 25.00% 89.43% 17.67% 79.64% 10.79%

GA 76.49% 4.29% 53.02% 14.17% 60.80% 13.06% 64.32% 21.41% 63.61% 23.78% 72.24% 12.88% 70.40% 9.82%

GA+Seg 63.02% 3.92% 51.32% 14.17% 60.32% 12.74% 57.19% 20.56% 63.62% 23.15% 71.60% 12.34% 62.22% 8.69%

specific class, where the lowest is 7 and the highest

is 35.

The results obtained at pixel-level are presented in Table

I. A first observation is that since more than 50% of the

pixels belong to the road surface, algorithms that lead on

that specific surface (Dense, and GA-based) top the overall

ranking. Another remark is that although regular (dense)

CT thrives on regular surfaces – fronto parallel and road,

it behaves poorly on irregular objects such as vegetation and

terrain.

All in all, we can notice that our newly introduced

approach ranks first in this classification, outperforming

the non-segmented GA approach with almost 10% for the

Census-only case, and the other methods by more than 17%.

However, this margin strongly decreases when we introduce

the energy minimization term. This happens because the

SGM energy minimization compensates for the lack of

correlation accuracy. An additional uncertainty is added by

the inherent segmentation errors at object interactions so

we can say that our method would work even better with

improved semantic segmentation techniques [24].

2) Results at sub-pixel level on Kitti dataset: The subset

of points is generated using the same randomized selection

as described in the training phase, therefore the points are

different from one subset to another even when selected from

identical images. The tested sub-pixel enhancement methods

are:

• SymmetricV interpolation function

• Parabola interpolation function

• SinFit – sinusoidal function proposed in [19]

• MaxFit – proposed in [21]

• LUT correction over results with SymmetricV proposed

in [22]

• GASP – optimal interpolation function for all images

• GASP +Seg – optimal interpolation functions for each

segment. The following functions have been used:

fS1(x) = sin(x4 × π/2) (9)

fS2(x) = 1/2× ((x+
√
x)− (2− x)2)×√x× (3x− 2)3

(10)

fS3(x) =
sin(x ∗ π/2)

2+x
3

× 1

x+ 1
(11)

fS4(x) = 1/2× (sin(x× π

2
− π

2
) + 1) (12)

fS5(x) = (
2
√
x

x2 + 1
+ sin(x2π))× 1

x+ 1)
(13)

fS6(x) = (
√
x− x4

2
)((2− x)2x− 2 +

√
x)(4− 2x− x4)

(14)

A first observation is that some of these functions do not

entirely respect thes aforementioned properties. For example

the function in equation (14) defined on the interval [0,1]

with values in [0, 0.5] is still continuous, but not monotonic.

This is a clear consequence of sub-pixel distribution differ-

ence between simple (frontal) and complex surfaces.

Tests performed over Kitti images (Table II) reveal higher

sub-pixel errors for parabola function. This indicates the

presence of a strong pixel-locking effect in this case. The

error is reduced for the SymmetricV, SinFit and MaxFit,

especially for Segments 3 and 4, that correspond to simple

fronto-parallel surfaces (cars, pedestrians etc). Both LUT-

based and GASP approaches show accurate global behavior,

but still give poor results for Segments 2, 5 and 6 – complex

surfaces.

The results obtained in Segment 4 (fronto-parallel, slim

objects) stand out. In this case, previously presented solutions

(SinFit) outperformed the GA-generated solution with a

small margin (because the function found during the training

phase obtained only 90% in accuracy). Therefore we selected

SinFit as best candidate for this particular segment. Conse-

quently, GASP + Seg approach will always outperform (or

at least produce similar results to) methods without surface

knowledge.
3) Execution time and possible enhancements: In terms

of execution performance, the additional segmentation takes

an additional time of 180 ms. If we use the approach of

[24] the semantic segmentation time can be reduced to only

40 ms, with similar accuracy and preserving the real-time

constraint. Table III presents details about execution time

required by each step on a Intel i5 CPU with 4 cores @

3.30 GHz. RGB-to-grayscale, WTA and left-right checking

execution times are included in the presented steps.

Scene segmentation comes with other benefits than just

delivering relevant information about surface structure. For

instance, a cross-based aggregation that accounts for scene

surfaces can easily be implemented in conjunction with

our optimal census generation algorithm. Besides this, there

are other stereo matching tricks that can be designed with

respect to segmentation (dealing with slanted-planes, post-

processing for hole filling etc). Therefore, we consider that

a fair comparison with state of the art algorithms on Kitti

testing dataset would be fair only if we plug-in some (or
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TABLE II: Average Error of sub-pixel techniques on Kitti Images (error thresh T = 1)

Method S1 S2 S3 S4 S5 S6 Total
SymmetricV 19.10% 44.71% 40.61% 44.37% 49.88% 34.09% 30.83%

Parabola 20.65% 46.72% 42.22% 46.2% 51.92% 34.88% 33.29%
SinFit 20.09% 44.97% 40.02% 41.62% 50.28% 34.59% 31.20%
MaxFit 19.47% 45.20% 40.07% 42.02% 50.28% 34.50% 31.08%

LUT SymmV 19.10% 44.57% 40.22% 41.88% 50.22% 34.07% 30.77%
GA 19.02% 43.76% 40.27% 41.73% 49.77% 34.59% 30.52%

GA + seg 18.20% 41.29% 37.93% 41.62% 45.27% 31.25% 27.67%

TABLE III: Execution time per each stage (ms) for Kitti images (375x1248)

Method Seg Census EnergyMin Sub-Pixel PostProc Total
Proposed 180 40 180 15 4 419

Regular SGM - 38 170 10 4 222

(a) Left Image (b) Right Image

(c) Segmentation Image (d) Disparity Image

Fig. 4: Results obtained on images from CityScapes dataset

all) of these mechanisms for increased disparity reliability.

However, introducing these additional refinements would be

outside the scope of this paper so we leave this for future

work.

4) Evaluation on Traffic images: Our method requires

color traffic images (for semantic segmentation) with sub-

pixel accurate disparity ground truths. To the best of our

knowledge Kitti2015 is the only benchmark that fulfills these

requirements. While stereo datasets such as Middlebury [31]

contain only indoor scenarios, segmentation datasets such as

CityScapes [23] or Pascal [32] lack in sub-pixel accurate

depth ground truths. We choose to show the results of our

method on images from CityScapes dataset due to its traffic

scenarios. Figure 4 depicts a)-b) the left and right images c)

the segmented image and d) disparity map obtained with our

method. Although we can not present numerical results for

this set, the resulted disparity is dense and accurate, while

the road smoothness indicates the absence of pixel locking.

VI. CONCLUSIONS

Learning methods such as ConvNets are becoming more

and more popular in the stereo reconstruction domain. In-

stead of using such methods for computing a similarity

measure, we use a ConvNet for semantically segmenting

the driving scene, which is then used as pre-processing for

stereo. For each particular segment we compute an optimal

census mask and an optimal SGM P1 penalty in order to

enhance the reliability of the pixel-level disparity map. We

also propose new sub-pixel interpolation functions for each

segment class. Three new genetic algorithms are proposed for

these optimizations. We performed multiple tests on different

types of data with best positive results for the proposed

approach.

We intend to continue our work by applying this method-

ology to other discrete stereo reconstruction solutions. More-

over, we plan to extend this method by combining ConvNet-

based similarity measures with our optimal Census, by

improving the reconstruction on slanted planes and by using

semantic segmentation for additional post-processing im-

provements.
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